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The matrix formalism is a general framework for evaluating the diffusion NMR signal from restricted
spins under generalised gradient waveforms. The original publications demonstrate the method for
waveforms that vary only in magnitude and have fixed orientation. In this work, we extend the method
to allow for variations in the direction of the gradient. This extension is necessary, for example to incor-
porate the effects of crusher gradients or imaging gradients in diffusion MRI, to characterise signal anisot-
ropy in double pulsed field gradient (dPFG) experiments, or to optimise the gradient waveform for
microstructure sensitivity. In particular, we show for primitive geometries (planes, cylinders and
spheres), how to express the matrix operators at each time point of the gradient waveform as a linear
combination of one or two fundamental matrices. Thus we obtain an efficient implementation with both
the storage and CPU demands similar to the fixed-orientation case. Comparison with Monte Carlo simu-
lations validates the implementation on three different sequences: dPFG, helical waveforms and the stim-
ulated echo (STEAM) sequence.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The matrix formalism, introduced by Callaghan [1], is a powerful
approach for evaluating the diffusion NMR signal under generalised
waveforms for spins restricted by any geometry. The method is
based on the multiple propagator approach developed by Caprihan
[2], and it involves approximating the gradient waveform with an
interleaved sequence of gradient impulses that change the phase
of each spin and ‘‘empty’’ time intervals during which the spins dif-
fuse. These events can be represented with matrices, namely A and
S (phase evolution) and R (diffusive evolution), which need to be
calculated only once for a particular geometry and a particular gra-
dient waveform. The final signal then has closed form comprising a
series product of powers of these matrices:

SRAm2 RAm3 . . . RAmN RS�; ð1Þ

where mi, i = 2, 3 . . . N are integers and � represents the hermitian
operator.

So far, the matrix formalism has been mainly applied using
Eq. (1) directly [3–5], which requires that the gradient impulse,
and hence the gradient orientation, does not vary in time. In partic-
ular, Codd and Callaghan [3] develop analytic forms for the matri-
ces A, S and R in geometries such as planar, cylindrical, and
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spherical pores, and analyse the effect of restricted diffusion when
the gradient is perpendicular to the restricting boundary. Codd et
al. do state that their method extends to varying gradient orienta-
tion, but they do not demonstrate the extension, which is non-
trivial.

Pulse sequences with time-varying gradient orientation are
becoming more common. For example the double pulsed field gra-
dient (dPFG) pulse sequence [6], has received considerable interest
recently because it may be sensitive to pore dimensions even at
long diffusion wavelengths [4,6–10]. Furthermore, in MRI, imaging
gradients and slice-select gradients can contribute significant dif-
fusion weighting, but in general have orientation which is often
different from that of the diffusion gradients.

Very few methods exist that can simulate signal from diffusion
sequences with varying gradient orientation. Özarslan and Basser
[7] propose an analytic approximation to the matrix formalism
that does allow varying orientation. However, the approximation
is valid only in the ‘‘low q-regime’’ [7], i.e. for small amounts of dif-
fusion weighting. To avoid this serious limitation, later work [11]
proposes an alternative general framework based on the multiple
correlation function (MCF) approach of Grebenkov [12]. Monte
Carlo simulations [13,14] can also be used for simulating diffusion
signal under gradients with time-varying orientation. Monte Carlo
simulations have the advantage that they can simulate diffusion in
very complex systems, see for example [15], however they are
computationally very expensive and, in particular, are impractical
for model fitting and parameter estimation.

http://dx.doi.org/10.1016/j.jmr.2011.02.022
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Here we demonstrate an efficient implementation of the matrix
formalism for the time-varying case and arbitrary diffusion
weighting. The extension requires 3D rather than 1D solutions of
the diffusion equation. More importantly, however, a naive exten-
sion requires evaluation of the fundamental matrix A every time
the orientation changes. We show how to avoid the recalculation
and thus retain computational efficiency similar to the fixed-
orientation case. A key motivation is to extend earlier optimisation
work [5] to gradient waveforms that can vary in orientation during
the pulse sequence. The new implementation also enables efficient
model fitting to data acquired using the output of this kind of
optimisation. We demonstrate the correctness of the extended
matrix formalism method by comparison with Monte Carlo
simulations, focusing on the cylindrical geometry; we provide
the corresponding expressions for the planar and spherical
geometries in Appendix A.

2. Theory

2.1. Brief review of the matrix formalism for fixed gradient orientation

The matrix formalism in its general form has been described in
detail elsewhere [1] and will be outlined only briefly here. In order
to calculate the diffusion signal under generalised gradients, the
gradient waveform g is approximated by a finely sampled succes-
sion of impulses. This subdivides the diffusion process into a se-
quence of time intervals, with fixed length s, bounded by the
gradient impulses q. Spin phase evolutions take place at the
boundaries of the intervals, and diffusion occurs during the inter-
vening periods. The gradient amplitude g(ns), n 2 {1, 2, . . . , N + 1}
is quantised into steps of size gstep. This way, at time ns the impulse
is

qn ¼ mnq ð2Þ

where

q ¼ ð2pÞ�1csgstep ð3Þ
mn ¼ integðgðnsÞ=gstepÞ; ð4Þ

and c = 2.675 � 108 rad T�1 s�1 is the nuclear gyromagnetic ratio.
The signal at the echo time is then

E ¼
Z Z

� � �
Z

qðr1Þ expði2pq1 � r1ÞPðr1jr2; sÞ

� expði2pq2 � r2ÞPðr2jr3; sÞ � � � � expði2pqN � rNÞPðrN jrNþ1; sÞ
� expði2pqNþ1 � rNþ1Þdr1 dr2 . . . drNþ1 ð5Þ

where P(rjr0, s) is the diffusion propagator which gives the probabil-
ity that a spin starting at position r will move to r0 after a time inter-
val s. The differential equation governing P(rjr0, s) is Fick’s law,
DrDP = @P/@t, where Dr is the diffusion constant [1]. For restricted
diffusion, the eigenmode expansion describes the diffusion propa-
gator conveniently:

Pðrjr0; tÞ ¼
X1
n¼0

expð�kntÞunðrÞu�nðr0Þ ð6Þ

where un are an orthonormal set of solutions to the Helmholtz
equation (obtained from Fick’s equation by standard methods of
separation of r and t variables [16]) parametrized with correspond-
ing eigenvalues kn;un and kn depend only on the restricting geome-
try. The signal E can then be written as a matrix product

E ¼ Sðq1ÞRAðq2ÞRAðq3Þ . . . RAðqNÞRS�ð�qNþ1Þ ð7Þ

where the elements of the matrices S, A and R are
SmðqÞ ¼ V�1=2
Z

umðrÞ expði2pq � rÞdr ð8Þ

Rmm ¼ expð�kmsÞ ð9Þ

AmlðqÞ ¼
Z

u�mðrÞulðrÞ expði2pq � rÞdr ð10Þ

m, l 2 {1, 2, . . .} and V is the pore volume. Note that S is a column
vector and R is a diagonal matrix. Using Eq. (2) together with the
formula A(nq) = A(q)n (proved in [1]) the total signal simplifies to

E ¼ SðqÞRAðqÞm2 RAðqÞm3 . . . RAðqÞmN RS�ðqÞ ð11Þ

where mn, n 2 {2, . . . , N} are defined in Eq. (4). This way any gradi-
ent waveform can be handled provided that we calculate just three
matrices A(q), S(q) and R(s), where q is the smallest impulse used to
digitise the waveform. Codd and Callaghan [3] derive expressions
for the matrices A(q), S(q) and R(s) for planar, cylindrical and spher-
ical geometry and use the above theory straightforwardly.

2.2. Extension for the gradients with time-varying orientation

In the review of the matrix formalism in the previous section,
the gradient orientation is implicitly fixed throughout the pulse se-
quence. The vector q, defined by Eq. (3), is the same at every time
point ns, n 2 {1, 2, . . . , N + 1}, and it is precisely this that allows a
single calculation of matrices A(q) and S(q) when evaluating Eq.
(11). However, if the gradient orientation varies in time, the orien-
tation of q must vary as well and Eqs. (2) and (3) need to be rede-
fined as:

qn ¼ jqnjq̂n; jqnj ¼ mnjqj ð12Þ

where

jqj ¼ ð2pÞ�1csjgstepj; mn ¼ integðjgðnsÞj=jgstepjÞ ð13Þ

and q̂n is the unit vector, defined for every time point ns, n 2
{1, 2, . . . , N + 1}, along the direction of qn. Now, the total signal is

E ¼ Sðjqjq̂1ÞRAðjqjq̂2Þm2 R . . . RAðjqjq̂NÞmN RS�ðjqjq̂Nþ1Þ ð14Þ

which is equivalent to Eq. (11), but for the case when the gradient
orientation varies throughout the pulse sequence.

Eq. (11) requires matrices A(q) and S(q) to be calculated only
once for a given geometry while Eq. (14) requires a separate calcu-
lation of each Aðjqjq̂nÞ; n 2 f2;3; . . . ;Ng and Sðjqjq̂nÞ; n 2
f1;N þ 1g. Element by element, calculation of each matrix is com-
putationally too expensive for the whole process to be practical.
The 3D extension we present below calculates these matrices
efficiently.

2.3. Demonstration for the case of cylindrical geometry

First we introduce cylindrical polar coordinates in which the
longitudinal z-axis is a symmetry axis for the system and the rele-
vant polar coordinates are (r, h) where r 2 [0, a], h 2 [0, 2p] and a is
the radius of the cylinder. The eigenvectors become:

umðr; hÞ ¼ ann0 Jn bnn0
r
a

� �
expðinhÞ ð15Þ

where ann0 are the normalisation constants

ann0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

nn0

pa2J2
nðbnn0 Þðb2

nn0 � n2Þ

s
ð16Þ

Jn are standard (cylindrical) Bessel functions of order n; bnn0 is the
n0th root of the equation J0nðbnn0 Þ ¼ 0 [1,3], and m 2 {1, 2, 3 . . .} is an
index representing the position of a given root in a sorted, ascend-
ing, sequence of roots fbnn0 j 8n;n0g. Note that the eigenvectors here
are different from the ones in Codd and Callaghan [3]. The last term
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in Eq. (15) is a complex exponential which allows any gradient ori-
entation, while [3] states just its real part which only allows for the
gradient orientation to be aligned with the x-axis. As a result, the
normalisation constants, which were calculated using the L2 norm
of the eigenvectors, are also different. Here, they have exactly the
same form for all n but in [1,3] the cases for n = 0 and n – 0 differ.
The normalisation constants here are the same as those from [1,3]
for n = 0. The eigenvalues are the same as in [1,3]

km ¼
b2

nn0Dr

a2 ð17Þ

We consider only the x–y component of the gradient impulses qn be-
cause no restriction occurs along the cylinder’s axis (z-axis). Accord-
ing to Eqs. (12) and (13), at each time interval s we can quantise qn

using q = (q,hq) where q is the amplitude and the hq is the angle be-
tween the gradient and the x-axis. Now the matrices can be written as

Smðq; hqÞ ¼ V�
1
2ann0

Z a

0
Jn bnn0

r
a

� �
r
Z 2p

0
expðinhÞ

� expði2pqr cosðh� hqÞÞdhdr

Rmm ¼ exp � b2
nn0Dr

a2 s
 !

Amlðq; hqÞ ¼ ann0akk0

Z a

0
Jn bnn0

r
a

� �
Jk bkk0

r
a

� �
r
Z 2p

0

� expðiðk� nÞhÞ expði2pqr cosðh� hqÞÞdhdr ð18Þ

We can choose q so that qr� 1 (we find qr = O(10�3) sufficient) and
thus use the 1st order Taylor expansion

expði2pqr cosðh� hqÞÞ � 1þ i2pqr cosðh� hqÞ ð19Þ

to obtain

Amlðq; hqÞ ¼
2pann0akk0

R a
0 Jn bnn0

r
a

� �
Jk bkk0

r
a

� �
r dr n ¼ k

2p2ann0akk0qð� sin hq þ i cos hqÞ
R a

0 Jn bnn0
r
a

� �
Jk bkk0

r
a

� �
r2 dr n ¼ k	 1

0 n – k; k	 1

8><
>:

Smðq; hqÞ ¼
V�

1
22pann0

R a
0 Jn bnn0

r
a

� �
r dr n ¼ 0

V�
1
22p2ann0qðsin hq þ i cos hqÞ

R a
0 Jn bnn0

r
a

� �
r2 dr n ¼ 1

0 n > 1

8>><
>>:

ð20Þ

Thus we see that

Amlðq; hqÞ ¼ Re½Amlðq;0Þ
 þ signðk� nÞ Im½Amlðq;0Þ
 sin hq

þ iIm½Amlðq;0Þ
 cos hq

Smðq; hqÞ ¼ Re½Smðq;0Þ
 þ Im½Smðq; 0Þ
 sin hq þ i Im½Smðq;0Þ
 cos hq

ð21Þ

Eq. (21) are the key equations in the implementation of the method
for varying orientation. They show that each A and S is simply a lin-
ear combination of the real and the imaginary parts of fundamental
matrices A(q, 0) and S(q, 0). We calculate the fundamental matrices,
which require expensive numerical integrals, only once and calcu-
late the total signal as in Eq. (14). We define similar expressions
for planar and spherical geometry in Appendix A.

3. Experiments and results

This section shows three experiments to validate the new
implementation against Monte Carlo simulations. The first experi-
ment use the dPFG sequence, the second helical waveforms and the
third a stimulated echo diffusion sequence (STEAM).

We determine the dimension of the matrices by the conver-
gence criteria when multiplying out the products, which is the
speed by which the exponents of the elements of the R matrix de-
cay [1]. For k � k matrices the R matrix elements will decay as
exp(�k2p2Drs/a2). Similar to Codd and Callaghan [3] we have found
20 � 20 matrices sufficiently accurate for our purposes.

Monte Carlo simulations use the Camino diffusion simulations
system [13]. We run simulations of molecules trapped within cyl-
inders (no other compartments) and each simulation uses 160,000
walkers and 5000 time steps.
3.1. dPFG sequence

The dPFG sequence [6] is characterised by two distinct PGSE
blocks, which are separated from each other by the mixing time
tm, as shown in Fig. 1a top. Each PGSE block has diffusion time D
and each diffusion gradient is assumed to have the same pulse
duration d. The angle w is the angle between the vectors G1 and
G2 (Fig. 1a bottom). The amplitudes G1 = jG1j and G2 = jG2j of the
two vectors are the same for all the experiments. To compare our
results to existing experimental results, we choose the same exper-
imental design as in [10,11], which plot signals from spectroscopy
on water filled microcapillaries. In all the experiments, only the
signal from the intra-cylinder space is calculated.

Fig. 1b shows the results for d = {1.5, 4.5, 7.5} ms and for a range
of angles w 2 [0, 360] degrees. The rest of the pulse sequence
parameters used were G1 = G2 2 {0.3757, 0.1252, 0.0751} T/m
(one for each d value respectively), D = 40 ms, tm = 0. The model
parameters were: the diffusion constant Dr = 2 � 10�9 m2/s and
the cylinder radius R = 5.2 lm.

Fig. 1c shows the results for G1 = G2 2 {0.1377, 0.2567,
0.3757} T/m and for a range of angles w 2 [0, 360] degrees. The rest
of the pulse sequence parameters were d = 1.5 ms, D = 120 ms,
tm = 0. This time Dr = 2 � 10�9 m2/s and R = 9.7 lm.

Fig. 1d shows the results for tm = {0, 5, 20, 100} ms and for a
range of angles w 2 [0, 360] degrees. The rest of the pulse sequence
parameters used were d = 1.5 ms, D = 40 ms, G1 = G2 = 0.3757 T/m.
This time Dr = 2 � 10�9 m2/s and R = 5.2 lm.

All the experiments show excellent agreement between matrix
formalism method and the Monte Carlo simulations, see Fig. 1.
Normalised Root Mean Square Error (NRMS) for each of the plots
is below 1%. The results also show excellent agreement with the
published experimental results [10,11].
3.2. Helical waveforms

We invented the helix sequence just for the purposes of the val-
idation. This sequence generalises oscillating gradient spin echo
(OGSE) sequence by allowing the gradient orientation to vary in
time. It is a useful test as the gradient orientation changes contin-
ually through the waveform unlike the other two sequences, which
have piecewise constant waveforms. We define the waveform as

GðtÞ ¼ cos
2pðt � s1Þf

T
; sin

2pðt � s1Þf
T

;
t � s1

5T

� �
G; s1 < t < s1 þ T

ð22Þ

where s1 is the time between the 90 degree RF pulse and the gradi-
ent, T is the duration of the gradient, f is the frequency of oscilla-
tions and G modifies the amplitude of the gradient. The second
part of the waveform after the 180 degree pulse, is identical to
the first and starts at time s2 after the first part. The diagram of
the waveform can be found in Fig. 2a.
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Fig. 1. Validation results for the double-PFG sequence. Full lines are the matrix formalism simulations, points on the lines are the Monte Carlo simulations. The diagram of the
sequence is shown in (a) top, while (a) bottom shows the angular relationship between the vectors G1 and G2. For all of the experiments G1 is set along the x-axis while G2 is
varied in the x–y plane with w 2 [0,360]degrees. In each plot a different parameter was varied: (b) the duration of the gradient pulses d; (c) the strength of the gradients G1

and G2; (d) the mixing time tm. The values of the rest of the parameters are specified in the main text.
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Fig. 2b shows the results for G 2 {0.05, 0.08, 0.15} T/m and for a
range of frequencies f 2 [0.2, 3]. The rest of the parameters used
were s1 = 1 ms, s2 = 2.7 ms T = 10 ms, Dr = 2 � 10�9 m2/s and R =
5 lm.

The agreement between the matrix formalism (full lines) and
the Monte Carlo simulations (marked points) is excellent. The
NRMS for each of the three plots is below 0.9%.
3.3. STEAM sequence

The stimulated echo (STEAM) sequence [17] has two 90 degree
RF pulses, instead of the single 180 degree pulse in the more com-
mon PGSE sequence, to allow longer diffusion times without T2 de-
cay. However, crusher Gc and slice-select gradients Gs around the
second and third 90 degree pulses add significant diffusion weight-
ing in the slice direction, much more so than in PGSE because they
are separated by the mixing time. Fig. 3a shows a diagram of the
sequence. The main goal of this section is to validate the method
for sequences which have the imaging gradients (crusher and
slice-select gradients), which are differently oriented from the dif-
fusion gradients. However, we also run simulations for the same
sequences, just without the imaging gradients, to show what dif-
ference that makes in the signal.

Fig. 3b shows the simulated signal for fifty different measure-
ments from a single-shell HARDI protocol implemented on a high
field preclinical scanner. Orientation of the diffusion gradients is
randomly distributed over a hemisphere and is different for each
of the measurements but the magnitude is constant. In all mea-
surements, ds = 1 ms, dc = 1.5 ms, dd = 7.9 ms, s1 = s2 = 0 ms,
Gd = 0.14 T/m and the crusher and the slice-select gradients Gc, Gs
are oriented along the z-axis with intensities Gc = 0.04 T/m,
Gs = 0.139 T/m.

Fig. 3b shows that the matrix formalism simulations (full lines)
agree very clearly with the Monte Carlo simulations (marked
points). The NRMS is below 0.51%. The dashed line shows the ma-
trix formalism simulations if imaging gradients are ignored, i.e.
Gs = Gc = 0. The points with the opposite bias, i.e. the ones above
the dashed curve, are measurements acquired with sequences in
which Gdz (the projection of Gd in z direction) and Gc are of opposite
sign. Due to the cancelation of these gradients, the diffusion weight-
ing is smaller than in measurements with no imaging gradients.

The difference between the full and the dashed lines is clear and
the NRMS for this experiment is at 7%. These results suggest that
imaging gradients should be accounted for when using the STEAM
sequence.
4. Discussion

Here we generalise the numerical matrix formalism of Codd and
Callaghan [3] to gradient waveforms with time-varying orienta-
tion. The two key differences are: (1) derivation of eigenvectors
for varying orientation; (2) the evaluation of the matrices A and S
to express A(q, hq) and S(q, hq) as simple functions of A(q, 0) and
S(q, 0). This makes the simulation of the time-varying gradient ori-
entation sequences computationally practical. We approximate
each sequence with hundreds of impulses and the evaluation of
each signal takes just a few minutes. The computational demands,
because of the nature of the method, are almost the same as for the
1D case. The only extra calculation is the implementation of Eq.
(21) at each time step to accommodate the change in the gradient
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Fig. 2. Validation results for the helical waveforms. The gradient vectors are rotating in a shape of a helix with frequency f 2 [0.2, 3] as described with Eq. (22). A diagram of
the sequence is shown in (a), where positions 1, 2, 3 and 4 mark the gradient vector G = [Gx, Gy, Gz] at the beginning of the sequence, just before the 180 degree RF pulse, just
after, and at the end of the sequence respectively. Full lines in (b) are the matrix formalism simulations, points on the lines are the Monte Carlo simulations. Each line is
generated with a different gradient amplitude determined by G as shown in Eq. (22). The rest of the parameters are outlined in the main text.
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gradient Gc), dashed lines are without, i.e. Gs = Gc = 0, and the marker points are the Monte Carlo simulations with imaging gradients. Gs, Gc are oriented along the z-axis and
Gdz is the projection of the diffusion gradient Gd in z direction. The parameter values are specified in the main text.

Communication / Journal of Magnetic Resonance 210 (2011) 151–157 155



156 Communication / Journal of Magnetic Resonance 210 (2011) 151–157
direction if present. We demonstrated the approach for cylindrical
geometry and validate it in simulation using three different proto-
cols: dPFG, STEAM and helical waveforms. Predicted signal is
highly consistent with simulation.

Unlike the analytic approximation in [18], our approach extends
the matrix formalism to gradient waveforms with time-varying
orientation that support arbitrary diffusion weighting. In [18] each
jqnj = mnjqj, i.e. the diffusion weighting of the whole waveform,
needs to be small. Our method only requires that the impulse
increments jqjr are small. This assumption is easily satisfied by
choosing s and jgstepj � 1 as jqj = (2p)�1csjgstepj.

Our approach is also different from the generalised MCF method
[11], which allows time-varying gradient orientation and has no
restrictions on the diffusion weighting. The main difference is in
how the NMR signal from a general gradient waveform is com-
puted. The matrix formalism approximates the gradient waveform
as a sequence of impulses and utilize the propagator method, yield-
ing the signal as the product of a set of matrices. In contrast, the
MCF method approximates the gradient waveform using a piece-
wise-constant function and explicitly solves the Bloch–Torrey
equation, yielding the signal as the product of a set of matrix expo-
nentials. MCF method offers itself very naturally for application
where the gradient behaviour can be described in blocks, hence
application to the dPFG sequence or for modelling imaging gradi-
ents appears ideal. Our work extending [5] however, focusses on
optimising a very general form of the gradient waveform. The ma-
trix formalism offers itself more naturally to our application as it al-
lows continuous changes in the amplitude and orientation, with no
computational penalty. With our extension, computational com-
plexity of the MCF and matrix method appear similar, although fu-
ture work is required to perform a formal comparison.

Here, we considered only very simple geometries such as cylin-
ders and spheres but the method adapts for other geometries. Also,
the first order approximation in Eq. (19) is a potential source of
inaccuracy. However, when we include the second order term in
the calculations we see little improvement to the already accurate
results. Finally, we have not considered surface relaxation here.
Our extension adapts easily by modifying appropriately the roots
and the normalisation constants of the basic matrices. It does not
interfere with the calculations when the gradient direction is
changing.
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Appendix A

A.1. Planar geometry

In the case of planar geometry Codd and Callaghan [3] gives
analytical expressions for matrices A, S and R when the gradient
is applied along the z-axis normal to a pair of parallel planes. When
the gradient changes orientation during the sequence, it is possible
to decompose the gradient vector into components parallel and
perpendicular to the plates, so the signal can be written as the
product of the contributions from restricted and free diffusions.
The contribution to the signal attenuation from restricted diffusion
can be obtained from Eq. (11), and the effect of the orientation
change in the gradient will be present only in the indexes mn as
these will be modified with the modification of the qn amplitude
along the z-axis. Because of this, there is no need to discuss the pla-
nar geometry further here, and the formulas from [3] can be used
straightforwardly.

A.2. Spheres

We introduce spherical polar coordinates x = rcos h,
y = rsin h cos /, z = rsin h sin / where r 2 [0, a], h 2 [0, p], /
2 [0, 2p] and a is the radius of the sphere. In a similar fashion as
in the cylindrical case, just in spherical polar coordinates, we solve
the Helmholtz equation to get an orthonormal set of eigenvectors:

umðr; hÞ ¼ anjmjn bnj
r
a

� �
Pjmjn ðcos hÞ expðim/Þ ð23Þ

where n = 0, . . . ,1, j = 0, . . . ,1, m =�n, . . . , 0, . . . , n and anjm are
the normalisation constants

anjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ 1Þðn�mÞ!
4p2a3ðnþmÞ!ðj2

nðbnjÞ � jn�1ðbnjÞjnþ1ðbnjÞÞ

s
; ð24Þ

jn are spherical Bessel functions of order n, bnj is the jth root of the
equation j0nðbnjÞ ¼ 0 and m 2 {1, 2, 3 . . .} is an index representing the
position of a given root in a sorted, ascending, sequence of roots
fbnn0 j 8n;n0g. Note that the last term in the eigenvector depends
on the azimuthal angle / and this term does not exist in [3]. Since
the gradients were assumed to be applied along the x direction in
[3], the result was independent of the azimuthal angle and the asso-
ciated state index m. However, this is no longer the case if we allow
the gradients to be applied along other directions. The eigenvalues
are

km ¼
b2

njDr

a2 ð25Þ

The quantised impulse at each time interval s is q, which in spher-
ical coordinate system equals (qcos hq, qsin hqcos /q, qsin hqsin /q)
and hence

q � r ¼ qrðcos h cos hq þ sin h sin hq cos / cos /q þ sin h sin hq

� sin / sin /qÞ ð26Þ

With some trigonometric manipulation, the matrices can now be
written as

Smðq; hq;/qÞ ¼ V�
1
2anjm

Z a

0
jnðbnj

r
a
Þr2
Z p

0
Pjmjn ðcos hÞ sin h

�
Z 2p

0
expðim/Þ expði2pqrðcos h cos hq

þ sin h sin hq cosð/� /qÞÞÞd/dhdr

Rmm ¼ exp � b2
nn0Dr

a2 s
 !

Amlðq; hq;/qÞ ¼ anjman0j0m0

Z a

0
jnðbnj

r
a
Þjn0 ðbn0j0

r
a
Þr2

�
Z p

0
Pjmjn ðcos hÞPjm

0 j
n0 ðcos hÞ sin h

�
Z 2p

0
expðiðm0 �mÞ/Þ expði2pqrðcos h cos hq

þ sin h sin hq cosð/� /qÞÞÞd/dhdr ð27Þ

In the same way as for the cylinders we use the 1st order Taylor
expansion for the last exponential in the integrals and now the
matrices A and S become:
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Amlðq; hq;/qÞ ¼

2panjman0 j0m0
R a

0 jnðbnj
r
aÞjn0 ðbn0 j0

r
aÞr2 dr

�
R p

0 Pjmjn ðcos hÞPjm
0 j

n0 ðcos hÞ sin hdh

þi cos hqq4p2anjman0 j0m0
R a

0 jnðbnj
r
aÞjn0 ðbn0 j0

r
aÞr3 dr

�
R p

0 Pjmjn ðcos hÞPjm
0 j

n0 ðcos hÞ sin h cos hdh m0 �m ¼ 0

sin hqð� sin /q þ i cos /qÞq2p2anjman0 j0m0

�
R a

0 jnðbnj
r
aÞjn0 ðbn0 j0

r
aÞr3 dr

�
R p

0 Pjmjn ðcos hÞPjm
0 j

n0 ðcos hÞ sin2 hdh m0 �m ¼ 	1

0 m0 �m – 0; 	1

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð28Þ

Smðq; hq;/qÞ ¼

V�
1
22panjm

R a
0 jnðbnj

r
aÞr2 dr

�
R p

0 Pjmjn ðcos hÞ sin hdh

þi cos hqq4p2anjm
R a

0 jnðbnj
r
aÞr3 dr

�
R p

0 Pjmjn ðcos hÞ sin h cos hdh m ¼ 0

V�
1
2 sin hqðsin /q þ i cos /qÞq2p2anjm

�
R a

0 jnðbnj
r
aÞr3 dr

�
R p

0 Pjmjn ðcos hÞ sin2 hdh m ¼ 1

0 m – 0;1

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð29Þ

Thus we see that

Amlðq; hq;/qÞ ¼ Re½Amlðq;0;0Þ
 þ signðm�m0ÞIm½Amlðq;p=2;0Þ

� sin /q þ iðIm½Amlðq; 0;0Þ
 cos hq

þ Im½Amlðq;p=2;0Þ
 cos /qÞ

Smðq; hq;/qÞ ¼ Re½Smðq;0;0Þ
 þ Im½Smðq;p=2; 0Þ
 sin /q

þ iðIm½Smðq;0; 0Þ
 cos hq þ Im½Smðq;p=2;0Þ

� cos /qÞ ð30Þ

Matrices A(q, 0, 0), A(q, p/2, 0) and S(q, 0, 0), S(q, p/2, 0) are
calculated only once at the beginning, while all the others are
simply derived from them at steps where the orientation is
changing. The signal is then calculated as in Eq. (14).
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